报告主题:Projective Spectrum, Group Theory, Kahler Metric and Complex Dynamics
主 讲 人:杨容伟教授,SUNY at Albany, USA
时 间:2019年5月26日(周日) 上午10:20
地 点:学院会议室(90510)
主讲人简介:杨容伟,美国纽约州立大学ALBANY分校数学与统计系教授。本科及研究生分别就读于上海科技大学及复旦大学。1994年赴美国纽约州立大学石溪分校攻读数学博士。师从国际范函分析及算子理论方向著名学者RONALDG. DOUGLAS教授。1998年获博士学位。杨教授为多元算子理论研究方向国际知名专家。是双圆盘Hardy空间上算子理论及Banach代数算子投影谱理论的开创者。投影谱理论开拓了泛函分析与其它众多数学方向的自然联系,在几何群论,李代数及复动力系统方向有重要的应用。
报告摘要:Finitely generated structures are importantsubjects of study in various mathematical disciplines. Examples include finitely generated groups, finitely generated Lie algebras and C*-algebras, tuples of several linear operators on Banach spaces, etc. It is thus a fundamental question whether there exists a universal mechanism in the study of these vastly diferent entities. In 2009, the notion of projective spectrum for several elements A_1, A_2, ..., A_n in a unital Banach algebra B was defined through the multiparameter pencil A(z) = z_1A_1+z_2A_2+...+z_nA_n, where the coefficients z_j are complex numbers. This conspicuously simple definition turned out to have a surprisingly rich content. In this talk we will review some results related to group theory, complex geometry, Lie algebras, operator theory and complex dynamics.